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The purpose of this paper is to study the approximation of functions in m
variables and its application to semigroup representation. First, two Bohman-
Korovkin-type theorems are established for the respective approximations of
unbounded, operator-valued and real-valued functions with noncompact supports
in R™. Then we investigate several approximation operators: some of them are
generalizations (to m dimensions) of well-known linear positive operators and
some are apparently new. Finally. through these operators, the first approxima-
tion theorem provides a unified approach to a whole set of representation for-
mulas for m-parameter (C,)-semigroups of operators: special cases include
well-known formulas due to Hille. Phillips, Widder, Kendall and Chung, as
well as some new ones.

I. INTRODUCTION

The well known Bohman-Korovkin theorem [3, 14] states that if {L,] is a
sequence of linear positive operators on Cla, b]. the space of real continuous
functions on [a, b]. then| L,/ — f , — 0 for every f € Cla, b]. provided that
this is true for f(r) —= 1, f(t) ~- r and f(r) = 2 Efforts have been made by
many authors to enlarge the domain of approximation operators to include
bounded or unbounded functions with noncompact supports. It is worth
while to mention here a few such versions. Miiller [19] extended the theorem
to functions which are bounded on [e, ) and continuous on some [c. d];
Schurer 22] treated functions which are bounded on every finite interval and
are of order O(t?) ( t | — oc): Ditzian’s result [8] deals with functions satis-
fying the growth condition f(r) <! M(f)}r* — D) u(r), —oc <t < o0, for
some suitable function u(f): Mamedov’s theorem estimates the convergence
rate of (L, f)(&) for functions f which are bounded on every finite interval. p
times differentiable at ¢, and of order O(lt #)(: ti—>oc). where p = 1
(see [15] or [25]); Hsu [12] considered positive operators which approximate
unbounded functions of order O( ¢ "“)#n = - 2). or of order O(e™ ' ¥w _ - 0).
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Approximation operators which have been investigated include the
Bernstein operators [2], the Baskakov operators [1], the Mirakjan-Szdsz
operators [18, 26] and their generalized forms (see Hsu [12], Schurer {22] and
Sikkema [23]), the operators of Meyer-Konig and Zeller [17. 5, 24, 19, 20],
the Gamma operators (see [19]), the Post-Widder operators (see [27, 13]),
the Gauss-Weierstrass operators [l1, 8]..... All these are special cases of
exponential operators which are characterized as integral operators with
kernels satisfying a certain type of partial differential equation (cf. May [16]
and Ismail and May [13]). They proved that if {L,} is a sequence of exponen-
tial operators and if fis a function of order O(e*!!i) and has a continuous 2nd
derivative on the interval [a, b], then (L, f)(¢) converge to f(¢) uniformly
in any closed subinterval of (a, b).

On the other hand, one can also formulate similar theorems for the
approximation of operator-valued functions. For instance, Butzer and
Berens {4, pp. 24-29] gave necessary and sufficient conditions for the approxi-
mation by operators of the form (L,T(:))(t) = Yy $n.:(1) T(kin). A special
case are the Bernstein operators (with ¢, (f) = (¥) t*(1L — £)**); they yield
Kendall's representation formula when they are applied to an one-parameter
(Cy)-semigroup of operators.

This paper is concerned with generalizations of the known results men-
tioned to approximations of m-variable real or operator-valued functions,
and with the application to representations of operator semigroups. In
section 2, we establish two Bohman-Korovkin-type theorems. The first one
deals with the approximation problem

Lin; T(w)x dym(us t) = T(t)x (xe X),
Jgm

where X is a Banach space, 7(7) is an unbounded B(X)-valued function on
R, and {m,(.; ) te R, n=1,2,..,) is a family of positive, finite Borel
measures on R™. The second one will treat the approximation of unbounded
m-parameter real functions by a sequence of linear positive operators. In
sect. 3 we examine some examples of approximation operators; special cases
of them will lead to some of such basic operators as those mentioned above.
Finally, in section 4, we apply these approximation operators to derive
several representation formulas for strongly continuous m-parameter semi-
groups of operators; particular cases lead to such exponential formulas for
one-parameter semigroups as those of Hille, Phillips, Widder and Kendall
(cf. Chung [7}).

2. THE APPROXIMATION THEOREMS

Let X be a Banach space and B(X) be the Banach algebra of bounded
linear operators on X. ' - will be used to denote the norm of X as well as
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that of B(X). Fort —{t, . to....t,)eE R 1 ,(p 1} will denote the norm

(X7, t, 'r; but we simply use 1 for' f .
2. pty 2

DeriniTioN 1. A real function g(r) is said to belong to G(K) (for a set
K C R if it i1s positive and strictly convex on R, and is continuously
differentiable on K. and if in addition. it satisfies the growth condition

lﬁ;g(sup{g(f)- toot r) *L. (1)

Notice that g(e G(K)). as a strictly convex function, is continuous on R™.
and that the function

hlu) == g(u) — [g(t) — Vg(t) (y — D] t =K. usR". (2)

is positive for # = r and is continuous in (¢, #) on K - R (see [10. pp. 12
and 23)).

It is clear that the functions ¢ (p.¢ -Dand e+ (p - l.w -0)
belong to G(R™), and incasem = 1. ¢ “(q -1)and et (w - 0)belong to
G(R). But the functions 's and e 't are not strictly convex if m - [, and
"t , does not satisfy the condition (1), therefore they are not in G(K) for any
K.

Now suppose {m,(-:1): 1R n=1.2..,1s a family of positive. finite
Borel measures on R™. Then we define

DEeriNiTioN 2. Given a function g < G(K). O (g(1). K) denotes the set of
those B(X)-valued functions T(¢) defined on R with the properties: (i) for
every x € X. the X-valued function 7(r) v is strongly measurable with respect
to each of the measures {m,(-: )}, (ii) T(1) 1s bounded on every bounded
subset of R” and strongly continuous at every point of the set K: (iit) 7(¢)
satisfies

lin‘I}{SUp{ET(I)j..g(f): [ (3

The set O,(g(z), K) is defined similarly with the exceptions that (1) is replaced
by the stronger condition that T(t). as a B(X)-valued function, is strongly
measurable w. r. ¢. {m,(-: 1)}, and the continuity of T(7) in (ii) is now taken in
the sense of operator norm. Note that when m — 1. (3) means T(1) = O(g(t))
(t — x).

If g(r) is integrable with respect to each #s,(-: ¢), then Def. 2 implies that
for each T(r) € O (g(1). K) and for each x = X. the Bochner integral

(L, TCYDx == ‘ Tanx o o, (1 ) (H
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exists for every t € R" and n — |, 2..... Thus (4) defines for every n. a linear
operator from O (g(t), K) into the set of all B(X)-valued functions on R,
Similar statements apply to O.(g(1), K).

For simplicity of notation. we will use (L, D)(#). (Lu) ) (i = 1,2,....,)
and (L,g())(¢) to denote the respective Lebesgue integrals of the functions 1.
(i = 1. 2...,) and g(¢) with respect to m1,(": t).

THeoREM 2.1.  Ler the function g< G(K) for a compact set K of Rv.
Suppose that g is integrable with respect to each member of the family {m (- t):
t< R n = 1.2,...0 of positive, finite Borel measures so that a sequence {L,)
of operators can be defined by (4) on O {g(1). K). Then the following statements

are equivalent:

(1) Forany T(t) e Ofg(t). K) and any x € X.
lirD (L, TCN(n)x = T(r)x uniformly for t in K. (5)

() The limits in (6). (7) and (8) hold uniformly for t in K.

lim (L, 1)(0) = 1 (6)
Iir_171 (LuXt) =t¢,, i=1.2.....m: (7)
llil]) (L,g(:1) — gli). (8)

(i) (L, 1)t) — | and (L.h{)Nt) — O uniformly for t in K as n — x,
where h(u) is defined in (2).

Moreover, the theorem remains rvalid when OJfg(r). K) is replaced by
O (g(0). K) and the limit in (5) is replaced by one taken in the sense of uniform
operator topology.

We first prove the following

Lenva.  Ler K, g.and h(°) be as assumed in Theorem 2.1. Then, for any
TN e Ofg(n). K). x € X and any 6 > 0, there exists a constant M(T(-} x, K, §)
such that

T(u)x — T(t)x |

,,SBp.é e <. M(T()x. K, d) (e R, t e K). (9

Proof. Since T(r) x., g(¢t) and Vg(t) are continuous on the compact set K,
they are bounded there by a sufficiently large number C. Hence we have the
following estimate

;_T(u)x— T(x| | Ty —~C . u - C|t
hi(u) ) 2(u) 2(u)
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for all 1 = K and all large u < 2. Now the assumptions (1). (3) imply the
existence of a positive number M, (K) such that lim,_.{sup; T(u) x
T(tyx  h(uy i rot= K AML(K). Therefore, there is a r, = 0 such
that ' T(u) x — T(tyx " hi{u) - M(K) — | for all t = K and for all « outside
the sphere {s = ®": wu , ~ r,. As noted before. /,(u} Is a positive, continuous
function on the compact set {(u.t): u < ry.1eK and ‘w1 S
hence /(u) assumes a positive minimum s, . It is now easy to see that one
can take M, — 1 —2supy T(t) x : t=K or -~ r, my, as the required
number M(T(-) x. K, 8).

Proof of Theorem 2.1. First, suppose (1) is true. Let xc X and v~ - 4~
be such that x*(x) = l. If we apply x> to both sides of (5) while T(s) is
substituted by I, or 7,1, or g(t) I, where / is the identity operator of B(X), then
we obtain (6). (7) and (8). Hence (i) implies (i1). (ii) =- (iii) being obvious. it
remains to verify the part (iii) = (i). For € K. v £ X, we have

(L TONOY — T(x - [ [T@)x — TOX] dyn (s 1),
(L)) — 1 1 T()x
Jp— L (LI — 1 T(Hxy,

where

J, — ' Ty — T()x  dom(u: 1)

< ou--t €6

X w(5. T(').\', K) . (Lnl)(,)‘

Jy = ‘ VTGN — T(Ox dang(u; 1)

Ty — TX_ (1 henn

isutp h(u)

= MT(OWX. K. SY( LAl )N2).

Here w(d, T(") x, K) represents the modulus of continuity of T(f) x defined
as sup{ T(w)x — T(Ohx :ucB" rekK and | u — #| < 8): it tends to O
with § because T(u) x is continuous at every point of the compact set K. This
fact together with the above estimates and the assumption that (L,1)(#) -~ |
and (L, ,())(¢) — 0 uniformly for ¢ < K implies that (L, T(*))(t) x converges
to 7(t) x uniformly for ¢ € K.

Before stating our second theorem, we describe first those functions which
will be involved.

DerFmniTION 3. Let g € G(K). By O(g(r). K) we mean the set of those real-
valued functions f(r) defined on R* such that /() is bounded on every
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bounded subset of R™, continuous at every point of K, and satisfying the
condition (3) with ! T(¢)i! there replaced by | f(#)' .

THeOREM 2.2.  Let g(t) be in G(K) for a compact set K, {L,} be a sequence
of linear positive operators, L, : O(g(t), K) — C(K). Then L, f(t) converges to
f () uniformiy on K for any fe O(g(t). K) if and only if it is true for the func-
tions 1. t; (i =1, 2..... m) and g(1), or, if and only if (L 1)t)— 1 and (L, h;
(IN8) — O uniformly on K.

The estimate in (9) plays an important role in the proof of Theorem 2.1. it
is also the same estimate which enables us to implement the proof of Theorem
2.2. By the same proof as in the previous lemma, we can find for given § > 0,
compact set K and fe O(g(r). K) a constant M(f. K, 8) such that

S —f@) < MK S) hy(w) (10)
holds forall te K. ue R with « —t > 4.

Proof of Theorem 2.2. While the other two implications are obvious. we
will only prove the crucial part that (L,1)(t) — | and (L, A/ ))(¢) — O uniform-
ly on K implies for any fe O(g(z), K) (L,.f()t) — f(¢) uniformly on K. Let
fe 0(g(n). K). Then it follows from (10) that for all t € K and 1z € R™ we have

) — f(1) < w(b. ). K) = M(f. K. 0) h(u).
thus
—w(8) — M(f. K. &) hyu)y < f(u) — f(1) << w(d) — M(f. K, 8) hy(u). (11)

where w(d) = w(d. f(*). K) is the modulus of continuity of f(t). On applying
L, to (11) we have

(LSO — FUNL D) < w(ONL N0 — M, K. ONLAA))0).

1t follows that

(L, fONE) — f(1) < (@)L D) — " f() (L)) — 1
= M(f. K S)(L A (-1 (12)

which. like the situation in the proof of Theorem 2.1. implies the uniform
convergence of (L, f(*))(t) to f(¢) on K. Hence the theorem is proved.

Remark. 1 for a certain value of n. (L, f () = (1)1 € K) for f(u) = I.
u, (i =1.2.....m), g(u), then we have from (2) that (L,A()Nr) = 0: this
together with (12) implies that for this n we have the equality (L, f(-)(t) =
f () (t € K) for every fe O(g(1), K). Similar assertions apply to the operators
in Theorem 2.1.
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3. SOME APPROXIMATION OPERATORS

Whether a sequence L, of operators wiil approximate functions in
O(g(r). K)yor O(g(1). K)or O,(g(t). K) has been shown to be determined by
whether these operators satisty (6), (7) and (8). In this section we will give
some examples of such operators. For simplicity of exposition and for
applications in section 4. we will mention in our theorems only those asser-
tions for functions in O (g(t). K): similar assertions concerning O .( g(r). K)
or O(g(r). K) may surely be formulated without difficulties by the reader.

The following notations are used in the rest of this paper. For r=2 .1
denotes the number ¥, , 7, and R} denotes the set {we R":u, -1, .i
o2 TV HU | O S S R k,). ks being nonnegative integers. and # 1s
any integer. then (;) will represent the number

e |);'(II*E* l
) KUk, Ukt

(1) The polvnomial distributions. Let )y, be a sequence of positive num-
bers, and K(a,) =ireRy :t—a -+, If teK{(x,). then m, (i1 is a
discrete measure:

' noLn ot —at r— a,*
@ (1) = ‘/‘)/Hl { ,\,;77. (1 — v =)
M ust) = s for u~a k. k u
no '

10 for u elsewhere.

It re K(x,), m, (-2 1) is a zero measure.
The associated operators are

\KZ Tla - k x,-n) x® (1) for 1€ K(x,):
(L'le())(f)\ - hew
0 for e K(x,).

These operators reduce to the original Bernstein operators in case m = |,
a=0and x, =1 (n=1.2..) In the following Theorems 3.1 and 3.2 we
will give conditions on 1, such that the limit

lim (L, OOy = T)x (13)

holds uniformly on compact sets for various classes of functions.

THEOREM 3.1. If nypn— 0 as n— x, and if K is any compact set which
is contained in K(~,) for all large n, then for any T(1)= 0 r ". K) and any
x = X the limit (13) holds uniformly on K.
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Proof. Notice first that: a) O(] ¢+ .I' . K) is independent of j( -~ [) since
all kinds of norms in R” are equivalent; b)if p < g.then O ¢t ") C O(]1:9);
c) it v, p > 1.is continuously differentiable on R™. Thus, in view of Therem
2.1, it suffices to show that (6), (7) and (8) with g (1) =i 1,} = ShLoh
converge uniformly on any compact K which is contained in K(x,) for all
large n. But this is equivalent (because of Theorem 2.1) to showing that for
eachp = 0.1, 2,.... and eachi = 1, 2..... m.

lim (L, u,")1) = 1;" (14)

will converge uniformly for 7 in K. Due to symmetry. proving (10) for the
case / = | suffices.

Without loss of generality, we may assume @ == 0 (otherwise. a translation
of variable will make it so). Let p = 0. We have (L,'1)(t) = 3., D) (1) =
(f 2, — 1 —i'x)" = 1fori:x,.=0otherwise. To prove (14) by induc-
tion, we assume it to be true for all p < j — 1. Since )7/ = y(3r — 1)y — 2) =
(vr—j -+ 1)y— Z, 1 ¢;3 for some constants ¢, . there follows:

(Ln ”1 )(’ Z ‘ ) ®n I(f

kan

— (Y Y :kl(kl k=i =D+ Y k'l @l

i=1

= Jy ~Jy,

nmee(m—j—1) hy oo Chy — 1) ymy 2 ot 3 fy\n-
Jy o= ; Zl—\nj ,1,...(”1_]'_; D (k)H(Tn_) (l —\—n)

i
h 2 i=1

N Uil el P CY B ) — 1y,

i
n ,\\7 —i

e

i-1 i ‘ —1 L=
h=Ya o)y (o ‘) <1>},,ma e (1) (Lalm)(D)

n
-3¢ 01 =0 as n— x.

Hence the uniform convergence (on compact subsets of R;" ) of the limit (14)
is true for p = j. and it is true inductively for all p = [, 2..... This proves the
theorem.

CorROLLARY 3.2. If A, — . n=1.2,.. then for everv T(t) which is
strongly continuous on K(X), the limit (13) holds uniformiv on K(~).

CorROLLARY 3.3. If \, u—>0and », > as n— x, and if T(t) is a
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strongly continuous function on Ry such thar T(ry O t ") (,t ~» %)
p . L then (13) holds uniformiy on any compact subset of Ry, .

The next theorem shows in particular that in case # - | Corollary 3.3
holds also for those continuous functions with order O(e” ).

THEOREM 3.4. Let = 1. If v, 0 -0 and ~, - ¢ as 0 — x. then for
any compact set KC R and any T(t)e Ofe! . K). the limit (13} holds
uniformly for tin K.

Proof. Since ¢" ' = G(R). the theorem will follow from Theorem 2.1 once
we prove

. n /\ TV A t n—h . .
lim ,Zo exp (1, 7”1(,)(7"’ N A (15)
uniformly on [0, b] for any b >- 0. Here we have assumed a = 0 without loss
of generality. The summation in (15)1s equal to

[_L explw x,.n) - 1 — L],

dn tr
{ X . . li’\n'
_'(exp(n X, ) H]r?\

!

== exp :‘\,, - In (l
= expiwte” [l — e — 1):x, ]

for some O <« A = A, < v,.n, the mean value theorem being used. From this
and the estimate: @™l — fle” — 1).x,] — U (0 — (f ) e — D
1 > 0. together with the hypothesis on v, (135) follows immediatelyv.

Remark. When m [. it is also possible to verify that lim,_, (L,
e 1)t) = et converges uniformly on compact subsets of Ry . How-
ever. we could not assert from it that a proposition similar to Theorem 3.4
be true because Theorem 2.1. does not apply to ¢ ! which is not strictly
convex as required in that theorem.

(1) The negative polynomial distributions. Let |x,! be a sequence of
positive numbers. {#2,%(: 1)} is defined as follows:
If t ¢« Ry . then the measure m,*(-: t) is defined as

4 ~— -

e by —a-k
i 2 —H a, — f,' ¢ I —a
o), )H. ”T"f’“) (r- ’vﬂ\
ALAULL) =y foru -a - %Ifl\ -0
XV tor u elsewhere.

if r& R . then we define % : 1) to be 0 identically.
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Thus, we have defined such linear operators as
S Y T(a + k auin) x®; (1) for 1eRy, ;
(L2TCNNx = )bo

0 for t¢RY :

these lead to the special Baskakov operators in case m = | and x, = I,
n=1.2,.., (recall [1]).

Tueorem 3.5, If lim,_, o,/n =0, lim o, > 0, and if K is a compact set
of Ry, then for any T(t)e O (1t *. K)(p > 1)and any x € X,

lim (L,#TCWOx = Tl (16)
uniformly for t in K.

Proof. The proof is quite the same as that of Theorem 3.1. First, denoting
(t — a)la, by b. we have for all f e R,

m

(Lt = ¢ (") [T b1 — byt
) (_Vﬂ)[z () ﬁ(—b,-)“*]u =By
b=0 k=v i=1

=y (—V”) (—By(1 =By =(=b —1 + b — 1.
=0
Next, by a similar computation as in the proof of Theorem 3.1, we get

(Ly2u)1) =

neen+j—1) i,
( > J HLE D0 — Y e (3:7—) (L 2u)(1).
i=1
This converges to t/ uniformly on compact sets, by the induction assumption.
Hence, the theorem follows (see the proof of Theorem 3.1).

THEOREM 3.6. In case m = 1, the class O ('t ", K) in Theorem 3.5 may
be replaced by the larger class O (e* 1, K)(w > 0).

Proof. In view of Theorems 2.1 and 3.5 we only have to establish the
uniform convergence of (L,2e**)(t) to e*t on [0, b] for any b > 0. By a

computation like that in the proof of the last theorem and then by the mean

640/28/3-5
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value theorem we have for each 7 and each » a corresponding A between 0 and
a,/n such that

”

2w - . _L — L ' ) ’
(L,2e) 1) = [l T exp(u-x,,,n)]
—expi{nte {1 — 1] — e“t): x,].
The assertion then follows from this and the estimate

(e[l — 11 — eoy]) — 17 = (1 + tiagde™ — Dfj 1 — te™ — 1y,

since the right term tends to 0 uniformly on [0, 6] as n — .

(111) The Poisson distributions. These are the measures m,*(-; f) defined
as follows: If r e R} , then

. . m k _
3 _ puta—t) g Wik — b— T
o3 1) D) () =r¢ Z[[l(/l(tz a)Yik; V foru = a + ot k >0,
0 for u elsewhere;
if 1€ RY, , m,;*(:; 1) is defined to be 0 identically.
The corresponding linear operators are
' | k 3 m
Y Tla+ T) x®3 (1) for teRY ;
(LAT(Nx = (B0 " (17)

0 for réR)..

In case m = 1, a = 0 they become the Mirakjan-Szasz operators ([18], [26]).
Now, following the same way of proof as that in Theorem 3.1, we have

THeEOREM 3.7. If T()e O t- " K)(p > 1) where K is a compact subset
of Ry, then (L 3T())t) x converges uniformly to T(t) x on K.

THEOREM 3.8. In case m = 1, the class O( t|”, K) in Theorem 3.7 may
be replaced by the class O (e*'!!, K).

Proof. In view of Theorem 2.1 and 3.7, this follows from the fact that
(L, 2e"1#1)(t) converges to e* t" uniformly for ¢ in K (cf. [16]).

(1V) The negative polynomial distributions of the second kind. We define
{my(-: 1)} as follows: if te K(1) = {te Ry 1t — a {1},



APPROXIMATION OF UNBOUNDED FUNCTIONS 249

@) =1 —1— ay! (‘—nk— 1‘) H (a; — ;)

4 . _ '
maNust) = foru:aw?/,‘—k.lz}ﬁ 0,
1T

0 for other u.

If ¢ ¢ K(1), then m,*(-: #) is defined to be O identically. The corresponding
operators are

s Y T(a -+ kitn — k) @y (x  for 1€ K(1),
(LATC)(Dx = (-0 (18)
0 for ré¢ K(1)

which map the set of strongly continuous functions on K(1) into itself. When
m = 1, these are the Meyer-K&nig and Zeller operators (recall Sec. 1).

THEOREM 3.9. If T(¢) is strongly continuous on the set K(1), then for any
xe X, (LAT())(t) x converges to T(t) x uniformly on K(1).

Proof. Since m,*u: 1) = 0 for all « outside K(1), the behavior of T'(x) for
u ¢ K(l)isirrelavent to L,*T("), and so we may assume that 7(¢) is bounded on
R*. Thus, by Theorem 2.1 and the remark in the proof of Theorem 3.1, we
need only verify that (L,%,?)(t) converges uniformly on K(1) to # for i = 0,
I and 2. First,

(L) = (1 —7T—ar Y (777 ‘) T1 (@ — 1)
k>0 i=1
= (1 — m)n——l(l + ZI_*——I;)_"’A — 1

To prove the assertion for i/ = | and 2, we will assume for simplicity of
computations that ¢ = 0; there will be no loss of generality. Indeed,

(L) = (0 — et ¥ (TN K T
i=1

E20

. =1y m—k—1 ,_
= (1 — pret Zl "Dkt T i T =y

=1
Eyzl

Similarly we have Y [ky(k; — D)/(n — k)(n + k — 1)] D} (1) = £, But
since the absolute value of the difference between (k/(n — k))* and k,
(ky — DJ)(n + k)(n + k — 1) is no larger than 1/n for any k, we have I(L,%4,?)
(1) — 12| < 1nXY Dy (t) = l/n: this shows that (L,%)r) converges
uniformly to #,2
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(V) The Gamma distribtions {.  Let [m,'(-: 1)} be so defined that the
corresponding operators are given by

.

(L,2T()Nt)x = ' ’ - exp [7 ,z (nu,»"r,)] ﬁ [Gna, o0,y e (n = 1)Y]
i-1

0 <0 i=1
< T(u)x duy -+ du, . r,=(0, x), i=1,2..,m. (19)

It 1s not hard to see that when T1(r) satisfies (3) with g(r) = e *'. the above
integral exists for large #. Notice also that in case m == 1. the integral becomes

(LATCWNx = TH(LQ;T "L e "% 1T (u)x du, t >0, (20)
- . \'U

This is the Post-Widder operator.

THEOREM 3.10. Let m = 1 and K be a compact subset of (0. ). Then
(LET()Nt) x converges to T(t) x uniformly on K, provided T(t) belongs to
O(e"!t, K).

Proof. After an (n — 1)-fold differentiation of two sides of the identity
j; e "o duy = (s — w)~ (s > w), we obtain

.

’ erTle™ du = (n — 1) (s — w) ", 21

~0

On substituting s = #:¢ into (21). we derive that (L ,'e-* )(¢) == (I — wt!n) .
Similarly. (L,tue” * Y)) = t(1 — we:n)~1 It follows that (L,'1)}2) = 1.
(L,2u)(t) = t and that (L,%e"!")t) converges to ¢ ' uniformly on K. The
theorem now follows from Theorem 2.1.

THEOREM 3.11. Let m - | and K be a compact subset of [1;; (0, x).
Then (L,2T())t) x converges to T(t) x uniformly on K, provided T(t) belongs to
ot ", K)Y(p 1.

Proof. We have for everyj =0

(”."';tl )u > L

(L5u)) ) = m_—”—,J e Myt Tyl duy
- [}

the right-hand term converging uniformly on K to ¢’ (by Theorems 2.1 and
3.10). Hence Theorem 2.1 applies again to yield the assertion (recall the
remark in the proof of Theorem 3.1).
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(V1) The Gamma distributions II. Next, we consider the operators defined
by
(LSTCNx = [ ’11 exp [— Y (111,-/'u,-)] [T Untiiu) usn — D]
0 ~0 i=1 i=1

- T(u)x du, -+ du,, . t; € [0, ), i=1.2....m (22)

One can see easily that L,87(") is well-defined for 7(t) = O (, tii". K) for
all large n. By changes of variables such as u, = nit;, i == 1. 2..... m. we
obtain a perhaps more convenient expression for L,$, namely.

"

(LST()1)x = B "x exp ‘v— I t,—r,—) [T1 e — D]
*0 v i=1 i=1

- T (l*‘ yeran l"‘. X dl'l a’l.n' . (23)

Uy Uin
When m = 1, (23) becomes the Gamma operator

t x ) " R
(LATONDY = o7 ‘[0 et T (B) xde. 120, (24)

THEOREM 3.12. Let K be a compact subset of Ry . Then for any T(t)e O,
(i't'?, K) and for any x € X, (L,3T())Nt) x converges to T(t) x uniformly on K.
Proof. From (21) we have (t;%i(n — 1)} f; etitig! gy, — 1 for all
n = 1. 2,.... (Or one can prove it by using integration by parts.)
(LSt = (47/(n — DY ‘ ) exp(— 1) vf Nnivy) dry
<0

n

- (n—1)-(n—j)
=t/ win — 1) (n —j)y—> 1y, ji=0,1..,

Lo M —j— DY { e g
0

as n — o0, the convergence of the limit being uniform for ¢ in K. The theorem
now follows from Theorem 2.1.

(VII) The normal distributions. Let

Dy (u: t) = (_ZL’;)"' “exp (= "—"2_“’_7_)

(u, t = R™).
Then the corresponding operators are defined as

I

2

(LTON = ()" [ exp(—n® w— 1 22) Tawdu, 1%
"R (25)

when m = 1, these are the Gauss-Weierstrass operators. (see [13].)
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“ and T(t) € Oyexp(w .t ).

252
THEOREM 3.13. Ler K be a compact set in R
X, (L, TN x converges to T(1) x as n — o uniformly

K). Then for any x =

on K.
Proof. Due to Theorem 2.1. it suffices to show the uniform convergence
m) and exp(w ¢ ?)

of (L,F].(('))(I) to f(1) on K for f(t)y = 1,1, (i =1

(v - 0). One has
exp[—n(u; — t,)%2] du;

(L, = [T (mi2m) 2 |

i=1
Since (L,u;)(r) is just the mean of the one-dimensional normal distribution
Finally, if we put 8, = 1 — 2w/n, then

N(t, . 1in), it 1s the function ¢, .
£

(L," exp(yw
exp[—n(u, — t;)%2] exp(wu?) du;

- ﬁ (n:2m) 2 '
i=1 o

— H (ni2m)t 2 ’/ exp (~ — 1B )exp(ut- B, du,
t U

Lz exp(“.,izl'lan) - (Bn)i(l'mm CXP(“ Li '/,B )

- ﬁ (/8")7

=1
Since f3, tends to | when n — oc. the last term converges to exp(w]| 1 )

uniformly on K.
ln this example we will consider operators {L,} which are

(VII).

defined for r == 0 by
hygh
(LATCN()x = | et Z 2t ZT%\U— T(u)x du
-0 A==
(nt) n- ‘ e T (u)x du. (26)

e X 1 '
o kU — DY,

THEOREM 3.14. Let K be any compact subset of [0, ), T(1) € (O (e* !, K)
Then for x € X (L 2Tt x concerges to T(t) x uniformly on K.

Proof. Using (21), we have

4 2[ i l 3
(Lpte” " )1) = ey L”/\") ") ‘n eyl —len dy
= k! '
= () L N et
e L e ()
t 0.
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This shows that (L,81)(r) = | and that (L, %e¥!*)(t) converges to e*it uni-
formly on K. By similar computations, we have (L,%u)(f) = r. Hence the
assertion follows from Theorem 2.1.

(IX). Let L,° be defined for 0 <t < | by

n I

(LngT('))(f).\' = Z (Z) [’J(l — [)'nf}. n-

I e~ ur 1T (u)x du. (27)
o k— 1) .[,

Then L,° maps O(fe*!l, [0, 1]) into the set of all strongly continuous func-
tions on [0, 1].

TuEOREM 3.15. For any function T(t) in OJev1!, [0, 1]) and x€ X,
(L.2T()Xt) x converges uniformly on [0, 1] to T(t) x.

Proof. (21) implies that for » larger than w,

7 \) I8

(L e 1) = 3 () 14t — oy [ R

o n—w

= [1 + wti(n — W)

Differentiation with respect to w yields that (L,%ue*i*!)(¢) = tn(n — w)—!
[1 = wt/(n — w)]*. Clearly, these two identities imply that (L,°1)(z) = 1.
(L, 2u)(t) = t and (L 2e*!*)(t) — e"!tl uniformly on [0. 1] as # — o0. Hence
the assertion is true.

(X) The last example is the operator

] k

- —Hn ' —n—h * — g h—
(LETEN = 3 (51) (=0 ot e [ e Toprde

where t > 0. We have

THEOREM 3.16. Let K be any compact subset of [0, o), T(t) € O (e*'! . K).
Then for x € X, (LPT())(t) x conrerges to T(t) x uniformly on K as n — .

Proof. Similar computations show that (LX1)(7) = 1, (L¥u)(t) = ¢, and
(Leri)(r) = [1 — wt/(n — w)]~" which converges to e ! uniformly on K.
Hence the theorem follows from Theorem 2.1.

Note that the operators L,8, L,? L!° are Szdsz, Bernstein and Baskakov
operators with f(k/n) replaced by the integral means (n*)/(k — 1)! fg e
"V (u) du.
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4. REPRESENTATIONS OF SEMIGROUPS

In this section we will apply the operators studied previously to derive some
representation formulas for semigroup operators.

Let S =[T(t;,15,....8,):0 <1t < x, i~ |.2....m] be a m-parameter
semigroup of bounded linear operators on Y. Let us assume that S is strongly
continuous on Ry = {reR:¢, - a;, Vil for some a such that g, =0,
i=1.2.....m If S, =[T(;):0 <.t << ] denotes the restriction of
T(z, . 15 ,.... t,,) to the half line {(0.....0.¢,.0.....0): 0 -~ 7, -~ o}, then S, is
itself an one-parameter semigroup which is strongly continuous for r, ™ a; .
S is the direct product of S, : T(t, .ty .....1,,) = [1r-. TAz;). To each i there
correspond two numbers A, - 1 and w, :: 0 such that

TAt) ~ M, exp(w,t,). a; <1t; < .
(for this. see [4].) Hence. we have the inequality
. T(’I Y FRT fm)' M eXP(“'(f1 - Iy — = — tm))~ te RT—F :

where M = M M, - M,, and w == max{w, : [ =/ < m).

With the above properties at hand, we are prepared to derive a list of
formulas. First we notice that Corollary 3.2, Theorems 3.9 and 3.13 apply
to any S defined as above: Corollary 3.3. Theorems 3.5, 3.7. 3.11, and 3.12
apply to those S with w 0. that is. uniformly bounded semigroups;
Theorems 3.4, 3.6, 3.8, 3.10. 3.14, 3.15 and 3.16 apply to any one-parameter
(Cy)-semigroup. Then, because of the nice semigroup property, namely
Ti{k,t;)) = [T(t)}. the representation formulas are easily obtained.

THEOREM 4.1. [f the m-parameter semigroup T(t; . ts..... 1,) (= T(t)) of
linear operators in B(X) is uniformly bounded and strongly continuous on Ry, .
and if ~,in — 0 as n— . then

. . I; — ay g " -
T(1)x = lim [1 + ; ( o 0T (51 - 1)] T(a)x. (29)
holds for all x € X and for all those t which are contained in K(x,) for all large
n; the convergence is uniform for t in any compact set in K(x,).

Note that in the case m = | or sup «, < o0, the assumption of uniform
boundedness of 7(t) is not required. For those 7(f)’s which are continuous
in the uniform operator topology, the limit in (29) can be taken in that
topology.

THEOREM 4.2. Let T(1) be as assumed in Theorem 4.1 and {r,) be a
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sequence of positive numbers such that lim,_. a,'n =0 and lim », > 0. For
teRY. and x € X we hare

T(1)x = lim l[— ( L al)(T { ") — 1)} T(a)x, (30)

i=1
uniformly for t in any compact subset of Ry’ .

Note that when m =1 the assertion is true also for unbounded one-
parameter semigroups. Similar conclusions as the above can be obtained for
uniformly continuous semigroups.

This theorem follows from Theorem 3.5, Theorem 3.6, and the following
lemma.

LemMA.  For any bounded subset G of Ry, . there is a positive integer N such
that if t € G and n = N, then the operator

m

Adt) =1 3 e ‘)(_T,» (=) —1)

is invertible, and

Ay =¥ () U [ffi )] (-1 - NN

the convergence is uniform for t in G.

Proof. The series in (31) is dominated by the series

B e kT a
5%1. K )(~1)EIU] (\_) T (.7_}”“ ;\_I)

n

—r—K

—r—k

<M Z [ )(-I)' [z:: (;)(5'—%& eu's,,)kl](l + L? a’)

“tn

CwE(en[E e o

Xy

B TR
§M‘;( , ) (=1 [ b0 ]

o

where b,(1) =>,_,(t, — a;))ix, and €, = x,n. Since G is bounded and
lim x, > 0, we can choose /1 such that b,(¢r) < A for all t in G. Hence, we have
b (t) eveni(1 — b,(2)) < hevsni(1 — h) < | for all ¢ in G and for sufficiently
large 1. Therefore. there is N such that the last series converges uniformly for
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tin G to M[l — b (t)er(l - b, N If 1 = N. This implies that the
series in (31) converges absolutely and uniformly for rin G ifn > A

COROLLARY 4.3.  If T(t) is an one-parameter semigroup strongly continuous
on [a, =), then for each x € X,

T - im (20— T (A=) " Ta@x @i ()

Proof. If t = a, this is trivial. If ¢ - a. then (32) ts obtained by setting
o, =t — ain (30).

THEOREM 4.4.  Let T(t) be any m-parameter semigroup, strongly continuous
on R}, . Then for xe X. te Ry .

T(t)x -~ Lim exp [Z (t; — a;n (Tl "11) — l)] T(a)x (33)

i=1

Furthermore, if T(t) is continuous in the uniform operator topology. then the
limit holds also in that topology.

Proof. 1t follows from Theorem 3.8 that for each of 7 == 1, 2...., m.
. oy
Tarax  limexp [(r — aw (T, () = 1)] T, (34)

the convergence being uniform on any compact subset of [a, . ). (33)
follows from (34) and the facts that 7(t) — [T,-, T:(t,).and T, .i = 1. 2.....m.
commute with each other.

THEOREM 4.5. Let S =[T(1): t € Ry.] be a strongly continuous m-para-
meter semigroup. and A; be the infinitesimal generator of TAt)). i == 1. 2...., m.
Then for xe X. 1Ry,

T = lim [[(/ — n7't,4)" x (35
"o Py
uniformly for t in compact sets of Ry .

A similar assertion holds for uniformly continuous semigroups.

Proof. Theorem 3.10 implies that for each i — 1. 2.....m,

T - lim ()" (0 — 1! ' exp(—nu 1) ul "T(u)y du,
"o Jo
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uniformly on any compact subset of [0, cc). But the last term is equal to
(I — n~1t;4,)~" for all large n (see [4, p. 34]), and so (35) follows immediately.

THEOREM 4.6. [f T(t) is an one parameter semigroup of class (C,) having
infinitesimal generator A, then the following representation formulas hold.

T(t)x = li_r_'g exp{tn®(nl — A)~' — nllix, t = 0; (36)
T(Hx = lln} [(1 — & — m(nl — A) )" x, 0 <t <l (37)
T(hx = lirg [(1 — e — t(nl — A" x, t = 0. (38)

Moreover, the convergence is uniform for t in any finite interval on which the
limit holds.

Proof. Since (n — A)y7Fx = ((k — DH! _[(f e u T(u) x du, (see [4,
p. 34]), (36). (37) and (38) follow easily from Theorem 3.14, Theorem 3.15
and Theorem 3.16, respectively.

The following two theorems are the respective versions of Theorem 3.12
and Theorem 3.13 for semigroups.

THEOREM 4.7. Let T(1),t 2= 0, be a uniformly bounded, strongly con-
tinuous one-parameter semigroup. Then for any x € X,

L . I)I >
T = lim o~y |, @

. ,'1 13
—tugn—1 _ -
u (T (.“)) X du, (39)
uniformly for t in any compact subset of [0, 20).

THEOREM 4.8. Let T(t).reR". be a strongly continuous m-parameter
group of operators on X. Then for x € X, (25) holds uniformly for t in any
compact subset of R™.

Remark 1. 1f T(t), t > 0. is a (Cy)-semigroup, Corollary 4.3 shows the
pointwise convergence of

T =lim [20 = 7(H)] " =0, (40)

If in addition. T(t) is contractive. we can deduce from Chernoff’s product
formula ([6] or [28]) that (40) holds uniformly for 7 in any compact subset of
[0, oc). In fact. we can define V() to be the function [21 — T(#)]7L, ¢ == 0).
Then we have V(0) = 1. ! V() = "L S o (T2 <135 ! T(1)i21+ <
1357 ,G)Y =1, and V'(0) x = lim,_, (V(t) — Dit) x = lim,_, V(O(T(D) —
Dit) x = Ax for x in the domain D(A) of the infinitesimal generator A of
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7(r). Thus the conditions set in Chernoft’s theorem are fulfilled. and we
have for any x € X'

TGy = fim [V () x = tim [~ 7 ()]

nox

uniformly for r in any compact subset of [0. x).

Remark 2. Theorem 4.4. with @ = 0, gives the theorem of Dunford and
Segal [9]. In the case m1 — I, Theorem 4.1. for @ -= 0 and -, = | reduces to
Kendall’s formula: Theorem 4.4 leads to Hille's first exponential formula;
Theorem 4.5 gives Widder's formula. Theorem 4.6 provides new proofs for
Phillips™ formula (36) and the two formulas (37) and (38), due to Chung [7].
Other formulas obtained here such as the general case of (29). (30), (32) and
(39) seem to be new.
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