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The purpose of this paper is to study the approximation of functions in III

variables and its application to semigroup representation, First, two Bohman
Korovkin-type theorems are established for the respective approximations of
unbounded, operator-valued and real-valued functions with noncompact supports
in ~"', Then we investigate several approximation operators: some of them are
generalizations (to III dimensions) of well-known linear positive operators and
some are apparently new, Finally. through these operators. the first approxima
tion theorem provides a unified approach to a whole set of representation for
mulas for m-parameter (Co\-semigroups of operators; special cases include
well-knov.n formulas due to Hille. Phillips. Widder. Kendall and Chung. as
well as some new ones,

1, I"TRODCCTIO:\

The well known Bohman-Korovkin theorem [3, 14] states that if {L n : is a
sequence of linear positive operators on C[a, b]. the space of real continuous
functions on [a, b], then !' L,,} ~ f x ---->- 0 for everyf r= C[a, b], provided that
this is true for f(t) ~ I, f(t) .... f and f(t) ~'. t2• Efforts have been made by
many authors to enlarge the domain of approximation operators to include
bounded or unbounded functions with noncompact supports. It is \\orth
while to mention here a few such versions. Muller [19] extended the theorem
to functions which are bounded on [a, :x,) and continuous on some [C. d];
Schurer [22] treated functions which are bounded on every finite interval and
are of order 0(t 2) ( t i ---->- w): Ditzian's result [8] deals with functions satis
fying the growth condition f(t) 'S'; !\!f(j)(r2 - I) fl(t), - ex: < t < w, for
some suitable function fl(t): Mamedov's theorem estimates the convergence
rate of (L,,J)(g) for functions f which are bounded on every finite intervaL p

times differentiable at ~, and of order O(! t 'X t ! --+ ex:), where p " I
(see [15] or [25]); Hsu [12] considered positive operators which approximate
unbounded functions of order O( t ")(n .. 2), or of order O(c'" ~)( II' . 0),
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Approximation operators which have been investigated include the
Bernstein operators [2], the Baskakov operators [1], the Mirakjan-Szisz
operators [18, 26] and their generalized forms (see Hsu [12], Schurer [22] and
Sikkema [23]), the operators of Meyer-Konig and Zeller [17. 5, 24, 19, 20],
the Gamma operators (see [19]), the Post-Widder operators (see [27,13]),
the Gauss-Weierstrass operators [11,8], .... All these are special cases of
exponential operators which are characterized as integral operators with
kernels satisfying a certain type of partial differential equation (cf. May [16]
and Ismail and May [13]). They proved that if {L n } is a sequence of exponen
tial operators and if/is a function of order O(e""lt;) and has a continuous 2nd
derivative on the interval [a, b], then (L,J)(t) converge to J(t) uniformly
in any closed subinterval of (a, b).

On the other hand, one can also formulate similar theorems for the
approximation of operator-valued functions. For instance, Butzer and
Berens [4, pp. 24-29] gave necessary and sufficient conditions for the approxi
mation by operators of the form (LJe»(t) = L~~~o ¢In.llt) T(kjn). A special
case are the Bernstein operators (with ¢In.k(t) = G) t"(l - 1),,-1); they yield
Kendall's representation formula when they are applied to an one-parameter
(C()-semigroup of operators.

This paper is concerned \vith generalizations of the known results men
tioned to approximations of m-variable real or operator-valued functions,
and with the application to representations of operator semigroups. In
section 2, we establish two Bohman-Korovkin-type theorems. The first one
deals with the approximation problem

lim r T(u)x d"mp(u; t) = T(t)x (x EX),
n-<x .. ~m

where X is a Banach space. T(t) is an unbounded B(X)-valued function on
~"', and {m n(.; t); t E lRu', 11 = I, 2, ... ,J is a family of positive, finite Borel
measures on !Rill. The second one will treat the approximation of unbounded
m-parameter real functions by a sequence of linear positive operators. In
sect. 3 we examine some examples of approximation operators; special cases
of them will lead to some of such basic operators as those mentioned above.
Finally. in section 4, we apply these approximation operators to derive
several representation formulas for strongly continuous m-parameter semi
groups of operators; particular cases lead to such exponential formulas for
one-parameter semigroups as those of Hille, Phillips. Widder and Kendall
(cf. Chung [7]).

2. THE ApPROXIMATIO"i THEORHIS

Let X be a Banach space and B(X) be the Banach algebra of bounded
linear operators on X. " .: will be used to denote the norm of X as well as
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that of B(X). For f -. (t\. f~ , .... f,,,) E' :;;<". f I' (p II will denote the norm
(I:;".\ f. ,,)\ 'I': but we simply use f for I f :~ .

DE:Fl'IT/ON I. A real function g(t) is .,aid to belong to G( K) (for a set
K C iR"') if it is positive and strictly convex on R'''. and is continuously
differentiable on K. and if in addition. it satisfies the growth condition

lim (sup1 g(t) f : f
I' "f

(I)

Notice that g(Ee G(K)). as a strictly convex function, is continuous on R'''.
and that the function

ht(u) = g(u) - [g(t) - \g(f) . (u -- f)l· f -= K. u E R". (2)

is positive for U= f and is continuous in (f, u) on K . R" (see [10. pp. 12
and 25]).

It is clear that the functions f :';, ( p, q I) and e'" t,I' (p I. II' . 0)
belong to G(IR"'), and in case 111 = 1. f 'J (q . I) and e'" t' (II' . 0) belong to
G(IR). But the functions I f i and e'" f'are not strictly convex if 111 :., I. and
',f ,. does not satisfy the condition (I), therefore they are not in G( K) for any
K.
~ow suppose {m,,(-: f) : f E IR"', n ~~ I. 2..... ; is a family of positive, finite

Borel measures on R"·. Then we define

DEFll"IT/O"i 2. Given a function g E G(K). OJg(t). K) denotes the set of
those B(X)-valued functions T(t) defined on 91'" with the properties: (i) for
every x E "y'. the X-valued function T(t) x is strongly measurable with respect
to each of the measures {m,,(-: f)]. (iil T(t) is bounded on every bounded
subset of iR"' and strongly continuous at every point of the set K: (iii) T(t)

satisfies

lim lsup:: T(tl: ,g(t): f =.= r;:
r 'x.

J... (3)

The set O,,(g(t). K) is defined similarly with the exceptions that (i) is replaced
by the stronger condition that T(t). as a B( X)-valued function, is strongly
measurable II'. r. f. {m"e: t)], and the continuity of T(t) in (ii) is now taken in
the sense of operator norm. Note that when m .~ I. (3) means T(t) = O(g(t))

( f ->- x).

If g(t) is integrable with respect to each /Ilk: t), then Def. 2 implies that
for each T(t) E Olg(t). K) and for each x EX. the Bochner integral

(L,,T(-))(t)x == r T(u)x iI/II,,(It: {) (.+)
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exists for every t E IR'" and n -~ I, 2, .... Thus (4) defines for every n, a linear
operator from 0lg(r), K) into the set of all B(X)-valued functions on IR"'.
Similar statements apply to O,lg(t), K).

For simplicity of notation, we will use (Lnl)(t). (Lnu,)(t) (i = L 2""n,)
and (Lng(-))(t) to denote the respective Lebesgue integrals of the functions I.
t,li' I. 2.... "') and g(t) with respect to m n(-: t).

THEORDt 2.1. Let the function g E G( K) for a compact set K of ~I".

Suppose that g is integrable ,pith re5pect to each member of the family {tn n(·: t):
t ,= fRl". n = 1.2, .... : of positive, .finite Borel measures so that a sequence {L,,1
ofoperators can be defined by (4) on 0 ig(t). K). Then the following statements
are eqllil'alent:

(i) For any T(t) E O,(g(t). K) and any x EX.

lim (LnT(-))(r)x = T(t)x
fl ·z

unit'oml~rfor t in K. (5)

(ii) The limits in (6), (7) and (8) hold uniformly for t in K.

lim (L"I)(T) = I:
fJ-·X

lim (Lnu,)(t) _c t, ,
11 "7_

lim (Lng(-))(t) ~ g(T).
II ox.

i = I. 2..... 11I:

(6)

(7)

(8)

(iii) (Lnl)(t) ---+ I and (L"htC))(t) ---+0 uniformly for t in K as n---+ x:,
]rhere Iz t(u) is dejined in (2).

Moreol'er, the theorem remains mlid when OJg(t), K) is replaced by
O,,(g(t'l. K) and the limit in (5) is replaced by one taken in the sense of uniform
operator topology.

We fir~t prove the following

LE\ti\tA. Let K, g. and h,(') be as assumed in Theorem 2.1. Then, for any
T(t) EO OJg(t). K). x E X and any 8> O. there exists a constant J1(T(-) x, K,8)
such that

T(u)x - nox I .
sup ---I(-)--- < :\f(T(·)x. K,8)
'1-' 6 It II

(II E iR u
,. t E K). (9)

Proqf Since T(t) x. g(t) and \"g(t) are continuous on the compact set K,
they are bounded there by a sufficiently large number C. Hence we have the
following estimate



242 SI::'\,-YE'\, SHAW

for all t := K and all large II c :{'. NO\\ the assumptions / I). (3) Imp!) the
existence of a positive number M 1(K) such that lim, __ .{sup'; TIll) x
T(t) x : h,(II) : : II r. fc K:~ .t1 j (K). Therefore. there is a r" 0 such
that: TIll) ,\- TU) x 'h,(II) o ,111(K) - I for all f'= K and for all II outside
the sphere {11:'= ~/ .. : II,' rll :. As noted before. h/(II) is a positive. continuous
function on the compact set {(II. t) : ' 11 0

' 1"" • t E K and II -- f < 6:.
hence h,/II) assumes a positive minimum 111 1 • It is now easy to see that one
can take ;\/1 - I - 2 sup{' T(t) x : t", K or t, '00 r,,<: Ill) as the required
number M(T(-) x. K. a).

Proof of Theorelll 2.1. First. suppose (i) is true. let x c X and .\ '.c .\ <

be such that x*(x) = I. If we apply XX to both sides of (5) while T(t) is
substituted by f. or t,l. or g(r) f. where f is the identity operator of B()(). then
we obtain (6). (7) and (8). Hence (i) implies (ii). (ii) ~. (iii) being obvious. it
remains to verify the part (iii) => (i). For I c K. x EO' X. we have

(L,.T( ·»(t)x - T(r)x-", J[T(u)x - T(t)x] dlllll,,(u; () i

(L"I)(t) - I I T(t)x

T(t).\ ; .

where

11 J/I--t (6 T(II)X - T(t)x d"iII,,(II: t)

<: wetS. T(·)x, K)· (L"I)(t).

12 = r ! T(II)x -- T(t)x d,,111 n(lI; t)
~ !I/_f ;;

-: sup T(u)x-=-<JJ!l~_(L"h,('»( t)
";c- t >0\ ht(u)

Here w(tS, TO x. K) represents the modulus of continuity of T(t) x defined
as supf T(u) x - T(t) x' : u EO' ~"'. I E K and ! u - Ii:::; a): it tends to 0
with 0 because T(u) x is continuous at every point of the compact set K. This
fact together with the above estimates and the assumption that (L n 1)(1)-->- I
and (L,/1;(-»(I) ->- 0 uniformly for 1:.= K implies that (L" T(-)(/) x converges
to T(/) x uniformly for t E K.

Before stating our second theorem. we describe first those functions which
will be involved.

DEFINITIO"f 3. Let g E G(K). By O(g(f), K) we mean the set of those real
valued functions f(t) defined on IRa' such that f(l) is hounded on every
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bounded subset of !R"l, continuous at every point of K. and satisfying the
condition (3) with! T(t):1 there replaced by If(l)' .

THEORE\! 2.2. Let g(l) be in G(K)for a compact set K, {L"l be a sequence
of linear positice operators, L n : O(g(l), K) -+ C(K). Then Lnf(l) converges to
f(t) uniformly on K for any f E O(g(t). K) if and only if it is true for the func
tions L t i (i = 1,2.... , m) and g(l), or. if and only if (L" 1)(1) -+ I and (L"h t

(- ))(1) --+ 0 uniformly on K.

The estimate in (9) plays an important role in the proof of Theorem 2.1, it
is also the same estimate which enables us to implement the proof of Theorem
2.2. By the same proof as in the previous lemma. we can find for given 8 '> O.
compact set K andfE O(g{t). K) a constant M(l K, 8) such that

. feu) - f(l)::; MU: K. 8) hlll)

holds for all t E K. II E :R'" with II - t ); b.

(10)

Proof of Theorem 2.2. While the other two implications are obvious. we
will only prove the crucial part that (L"I )(t) -+ I and (Lnh t ( .»(t) -+ 0 uniform
lyon K implies for any fE O(g(t). K) (L,,J(-)(I)-..f{t) uniformly on K. Let
f E O(g(t). K). Then it follows from (to) that for all t E K and II E !R~I we have

f(lI) - f(l) ,,-::: w(8,/(-). K) -'-- MCr. K. 8) li t(II).

thus

-web) - :"f(f K. 8) li t(lI) :~;f(II) - f(t) ~s:: w(8) - Jf(f K, 8) lilu). (II)

where w( 8) == w( 8,/(-), K) is the modulus of continuity of f(t). On applying
L" to (II) we have

It follows that

(L,J(-))( t) - f (t) ~ w(8)(L" I )(t) - 'f (t)' (L" I )( t) - I

-:- MCr. K.o)(L"lif(·){t) (12)

which. like the situation in the proof of Theorem 2.1. implies the uniform
convergence of (Lnf(-))(I) tof(l) on K. Hence the theorem is proved.

Remark. If for a certain value of 11. (L"f(-»(t) = f(t)(t E K) for feu) = L
II, (i = 1.2..... 111). g(II). then we have from (2) that (Lnh,C)){t) = 0: this
together with (12) implies that for this n we have the equality (L,J(-))(t) =

f{t) (I E: K) for every fE O(g(t), K). Similar assertions apply to the operators
in Theorem 2.1.
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3. SO\lE ApPROXI'vIAno" OPERATORS

\Vhether a ~equence : L,,: of operators "'ill approximate functil,n~ ill
O( g(t). K) or 0 J g( t). K) or 0 ,,( g(t). K) has been shown to be determined by
1\ hether these operators ~atisfy (6). (7) and (~). In this section II e II ill gi ve
some examples of such operators. For simplicity of exposition and for
application~ in section 4. \Ie I\ill mention in our theorems only those a~ser

tions for functions in 0,( g(t). f{): similar assertions concerning OJ g(t). K)

or O( g(l). K) may ~urely be formulated \\ ithout difficulties by the reader.
The follO\\ing notations are used in the rest of this paper. For t c= ?". 1

denotes the number '2.;" 1 r, and iR;" denotes the set [u c R''': u, . r, . i
I. 2..... 111:. If k c (1..1' k" ..... k",). k,'~ being nonnegative integers. and II IS

any integer. then (;,') will represent the number

(I) The polYllomial distributiol/.\.

bel'S. and K(.-'/l) = !t E !R~:: t _. a '

discrete measure:

Let: .\//: be a sequence of positive nUI11

\,,:. If r E K(e}.//). then m,/(.: f) is a

If t E K(.'t ll ), 111,,1(-: 1) is a zero measure.
The associated operators are

II.

(L., I T( '))(f).\"
\ I T( a - k\"II) xc}) ~.l,(t)
'1.,:"

10

for tEK(1,,);

for tEA(\/ll.

These operators reduce to the original Bernstein operators in case m -~ I.
a = 0 and \" -= 1 (n = I. 2.... ,). In the following Theorems 3.1 and 3.2 we
will give conditions on .\,. such that the limit

lim (L,/T(-))(rh = T(t)x
/l--J:

holds uniformly on compact sets for various classes of functions.

( 13)

THEORBI 3.1. 1(\",11 - 0 as II - x. alld if K is allY compau .Iet IIllicll
is contained ill K(-.\,,) for all large n. thell for any T( 1) -= 0 It". K) and UIl.\'

.\" ':' X. the limit ( 13) holds ulI((or/1/l)' 011 K.
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Proof Notice first that: a) 0,(1 t}' . K) is independent of j( .. I) since
all kinds of norms in !Rill are equivalent; b) ifp ~ q. then 0i t: J') C OJ! t' q);
c) it ", p :> I. is continuously differentiable on [RIll. Thus. in view of Therem
2.1, it suffices to show that (6), (7) and (8) with g,,(t) = it,~; = L;~i t i "

converge uniformly on any compact K which is contained in K(c'n) for all
large 11. But this is equivalent (because of Theorem 2.1) to showing that for
each p ~cc O. I. 2, .... and each i =, I. 2..... 111.

lim (L"iU,")(t) = ti"
11- -£

( 14)

will converge uniformly for t in K. Due to symmetry. proving (10) for the
case i= I suffices.

Without loss of generality. \\e may assume a ~, 0 (otherwise. a translation
of variable will make it so). Let p = O. We have (L/I)(t) =, LC;n <P~.I,(t) =
U 3." - I - (:lon)" ~ I for t <: \11 • = 0 otherwise. To prove (14) by induc
tion. we assume it to be true for all p -(: j - I. Since yj = y(y- I )(y - 2) ...
(y - j ~. I) - L;:~ c;y' for some constants c; . there follows:

where

J
I

=_ 11 ... (11 - j ~ J)", 1 AI'" (k l - j..l- J) (/) TI'" (' t i "lk,( I _ ~)1/-ii
l1 i ,,7;; J." 11'" (n - j -'- I) k i~i'~' "n

11 .•• (11 - j - I), i .
Il i til. _L .<P,,_u·(t) ---+ ti"~

k~l'-)

as 11 ---+ X;.

Hence the uniform convergence (on compact subsets of !R;'J of the limit (14)
is true for p = j. and it is true inductively for all p =, I. 2..... This proves the
theorem.

COROLLARY 3.2. If\" -- .\. 11 ~ I. 2..... thell for aery T(t) ll"hich is
strollgly continuous 011 K( .\). the limit (13) hold5 ul1lformly 011 K( \).

COROLLARY 3.3. ~f \" 'n ---+ 0 alld .\" ---+ ,x; as 11 ---+ x. and if T(t) is a
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strongly contilluOliS functioll 011 iR~', such tliar T(t) O( t I') (, t ~ x).

p. 1. then (13) holds ulliformly on any compact subset (/flR~'; .

The next theorem shows in particular that in case 111 - I Corollary 3,3
holds also for those continuous functions \\ith order O( e'" ! ).

THEORE\I 3.4. Let III =. I. If .t" II -~ 0 alld "n . .- X as n --+ x. then for
allY compact set KC IR~~. and anI' T(t) E O,(e" ". K). tlie limit «(3\ hold~

un(formlyfor f in 1',"-

Proof Since e" t E G(R). the theorem will follo\\ from Theorem 2.1 once
we prove

( 15)

uniformly on [0, b] for any b > O. Here we have assumed a = 0 without loss
of generality. The summation in (15) is equal to

f ]"1--
\ "

= exp 1/,\" . In [I . -'- (exp(II' \ 'II) I I] !~i
'11' - f /1\

, In

C~ exp{II'fe"",[1 ~- f(e" , ~ I )\"J:

for some 0 -< ,\ = iI" " 'TI' fl. the mean value theorem being used. From this
and the estimate: 'e"'\'[1 ~ t(e'I',\ ~ I )'nJ - 1 ';; (I ~ (t\n))(e'I"\ - I I.
t :-': 0. together with the hypothesis on '" (15) follows immediately.

Remark. When 111 I. it is also possible to verify that lim n _, (L,,1

e"'" l}(t) = e""1 converges uniformly on compact subsets of IR~'-. Ho\\
ever. we could not assert from it that a proposition similar to Theorem 3.4
be true because Theorem 2.1. does not apply to e'" t '] which is not strictly
convex as required in that theorem.

(II) The negatll'c pol)'l1omlal distributions. Let : ',,: be a ,;equence of
positive numbers. {m/(-: OJ is defined as follows:

If t ,c; IR~'- . then the measure 111,,2(-: t) is defined as

/1/,,"111: t) c

10

for u .~ a 2'>. k '[
11 •

for II elsewhere,

-0

If t E R~'... then we define m,,"l ': t) to be 0 identically.
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Thus, we have defined such linear operators as

247

(L T(a ~ k :).,,/n) Xep~.k(t)

(L,,2T(-)(t)x = )~o
for t E ~::'+ ;

for t rt ~~I~ ;

these lead to the special Baskakov operators In case m = I and." = I,
n = I. 2, ... , (recall [I]).

THEOREM 3.5. If lim,,_x rx,,/n = 0, lim i:)." > 0, and if K is a compact set
of~:_, then for any T(t) E 08( It 1', K)( p > I) and any x EX,

uniformly for t in K.

lim (L"tT(·»(t)x = T(t)x
,,~x

(16)

Proof The proof is quite the same as that of Theorem 3.1. First, denoting
(t - a)/rx" by b. we have for all t E ~:+

(L,,21)(t) = I: C~/) n(-bi)k;(1 ~ 5)-"-k
Ii:;,o i~l

= £ (--:n) (-5)"( I - 5)-'/-<, = (-5 - 1 + 5)-" = I.
"=0

Next, by a similar computation as in the proof of Theorem 3.1, we get

This converges to t/ uniformly on compact sets, by the induction assumption.
Hence, the theorem follows (see the proof of Theorem 3.1).

THEORE~ 3.6. In case m = I, the class Ol' t ". K) in Theorem 3.5 may
be replaced by the larger class Oie"·,tl. K)(II' > 0).

Proof In view of Theorems 2.1 and 3.5 we only have to establish the
uniform convergence of (L,,2e1l"U)(t) to ell"t on [0, b] for any b > 0. By a
computation like that in the proof of the last theorem and then by the mean
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value theorem we have for each t and each n a corresponding ,\ between 0 and
'\n.:'n such that

[
r t ] ."(L,,2e" ")(l) ~'. I - - - - exp(w').nin)

_"\" \,/

The assertion then follows from this and the estimate

since the right term tends to 0 uniformly on [0, b) as n --->- x,.

(Ill) The Poisson distributions. These are the measures m n
3(-; t) defined

as follows: If t E 1R1~'-- , then

. __ Tn k _

lcI>3 .(1) = e'da-t) n(n(1· - a»I-.;/k. ! for u = a + - k - 0
1l1n3(U; t) = n.1-. ;.-1 1 " 1 n' .> ,

o for u elsewhere;

if t rF 1R1::'+ ' m n3( .; t) is defined to be 0 identically.
The corresponding linear operators are

o

for t E 1R1~".- ;
(17)

for t rF 1R1~'~ .

In case m = I, a = 0 they become the Mirakjan-Szeisz operators ([18], [26]).
Now, following the same way of proof as that in Theorem 3.1, we have

THEORDt 3.7. If T(r) E OJ t, J'. K) (p 1) where K is a compact subset
oflR1~'-, then (L n

3 T(-»(t) x converges uniforml)' to nt) x on K.

THEOREM 3.8. In case III = I, the class 0,( t II', K) in Theorem 3.7 may
be replaced by the class O.le"·fl, K).

Proof In view of Theorem 2.1 and 3.7, this follows from the fact that
(L,,3e'l'lu i )(t) converges to e'" t uniformly for t in K(cf. [16]).

(IV) The negative polynomial distributions of the second kind. We define

{m n
4(-; t)J as follows: if t E K(I) = {t E 1R1~~: t - a ~{ I},
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ep~.k(t) = (I - I - a)""-l (-n
k
- I') TI (a; - li)k,

t=l

249

o

k -
for u = a - --,--r:' k ;-", 0,

n, K

for other II.

If I rt K(l), then m,,4(.: I) is defined to be 0 identically. The corresponding
operators are

for IE K(I),
(18)

for t ri= K(I)

which map the set of strongly continuous functions on K( I) into itself. When
m = I, these are the Meyer-Konig and Zeller operators (recall Sec. I).

THEOREM 3.9. If T(t) is strongly continuous on the set K(I), Ihen for any
x EX, (L n4TO)(t) x converges to T(t) x uniformly on K(I).

Proof Since m n
4(u: I) = 0 for all u outside K(I), the behavior of T(u) for

u rt K(I) is irrelavent to L n4T(·), and so we may assume that T(t) is bounded on
[Rill. Thus, by Theorem 2. I and the remark in the proof of Theorem 3.1, we
need only verify that (L n4uli)(t) converges uniformly on K(l) to tl i for i = 0,
I and 2. First,

-- -n-- I) In

(L n41)(t) = (I - t - a)'lt-l r ( k n (ai - tfi
k),O i~l

= (I - I - a)"-l(I + a - t)-"-l = I.

To prove the assertion for i = I and 2, we will assume for simplicity of
computations that a = 0: there will be no loss of generality. Indeed,

(L 4U )(t) = (I - t)n-l " ('-n - I)~ n'" (-t.)"i
" 1 _L k 11 -'- k . '

k;;'O ,~l

Similarly we have Lk [kl(kl - I)/(n - k)(n -+- k - I)] ([>~"k(t) = 11
2• But

since the absolute value of the difference between (kl!(n --:- k»2 and k i

(k l - I)!(n --T-- k)(n + k - I) is no larger than 1/n for any k, we have !(Ln 4u12)

(t) - 11
2 ! ~ I/n L ([>~,k(t) = I/n: this shows that (L,,4 1112)(t) converges

uniformly to t1
2•
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(V) The Gamma distribtiolls 1. Let ~m"I(.: I): be so defined that the
corresponding operators are given by

(L""T(-))(t)X~·.C .C eXPl-;~ (IIU,:t,)J D[(IIU,t,)",U,(II- I)!]

. T(u)x du] ... du,,, . t , E (0. x), t=I,2.... ,I1I. (11))

It is not hard to see that when T(t) satisfies (3) with g(l) = e"' I". the above
integral exists for large n. Notice also that in case m ~., I. the integral becomes

This is the Post-Widder operator.

t > O. (20)

THEOREM 3.10. Let m = I and K be a compact subset of (0, (0). Then
(L Il5T(·»(t) x converges to T(t) x uniformly on K, provided T(t) belongs to
O,le'('lt~, K).

Proof After an (n - 1)-fold differentiation of two sides of the identity
f~' e-,Oll e '(,11 du = (s - 11')-1 (s > 11'), we obtain

(" e-·,uu',-le"''' du = (II - I)! (s - It') "
'1)

(21 )

On substituting s = 17;'t into (21). we derive that (L/e/l' 'I )(1) ,-, (I - It't.'n) "'.
Similarly. (L/ue'" 11 )(t) = t(l - 11'(n)-I/-I. It follows that (L,/ I)(I)~. I.
(L n5u )(t) = t and that (L"le""I")(I) converges to e'" f uniformly on K. The
theorem now follows from Theorem 2.1.

THEOREM 3.11. Let m _' I and K be a compact subset of Il~~1 (0, x;).

Then (LI/5T(-))(t) x converges to T(t) x uniformly on K. provided T(t) belongs to
O,li! t I iI, K)( p > I).

Proof We have for every j ? 0

the right-hand term converging uniformly on K to t1) (by Theorems 2.1 and
3.10). Hence Theorem 2.\ applies again to yield the assertion (recall the
remark in the proof of Theorem 3.1).



APPROXIMATION OF UNBOUNDED FUNCTIONS 251

(Vi) The Gamma distributions If. Next, we consider the operators defined
by

(L,,6T(·))(t)x = .c" ... .Cexp r- i~ (ntiiU i)] j} [(nt;!uY"u;(1I - I)!]

. T(u)x dUt ... du", . t; E [0, ,x), i = I. 2.... , m. (22)

One can see easily that L,,6T(-) is well-defined for T(t) E O,{; t iii', K) for
all large n. By changes of variables such as U; = n/z:; , i == I. 2..... m. we
obtain a perhaps more convenient expression for L,,6, namely.

When m = I, (23) becomes the Gamma operator

f >: O.

(23)

(24)

THEOREM 3.12. Let K be a compact subset of IR;;'-L . Then for any T(t) EO"
([I f! P, K) andfor any x EX, (L,,6T(.))(t) x converges to T(t) x uniformly on K.

Proof From (21) we have (ti"i(n - I)!) f~ e-t;"il,~-ldZ:i = I for all
n = I, 2, .... (Or one can prove it by using integration by parts.)

(L,,6C1i)(t) = (t1"/(1I ~ I)!) rx

exp( -tt(1) 1';-I(n/1'l)i d1't
• 0

i = 0, I, ..... .

as n ---+ 00, the convergence of the limit being uniform for t in K. The theorem
now follows from Theorem 2. I.

(VII) The normal distributions. Let

_ ( II ) '" '~ , n' U - t ~ .
D"I11,,'(u; 1) = ~ exp (- 2 )

Then the corresponding operators are defined as

(u, t E IR"').

(
n ) ", ,2 "

(L"7T()(t)x = ~ .IRon exp(-II: 1I - t 2/2) T(u)x du,

when m = I, these are the Gauss-Weierstrass operators. (see [13].)

t E ~II';

(25)
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THEORHt 3.13. Let K be (/ compuct.let in [R''', und T(t) E Os(exp(H' ,t ~).

K). Then/or any.\ '= X. (L,,7T('))(r) x conl'erges to T(t) x as /I ---+ ,x u/liformly
on K.

Proof Due to Theorem 2.1. it suffices to show the uniform convergence
of (L//(·))(I) to f(t) on K for f(t)= I. t, (i ~ I. .... Ill) and exp(II' t~)

(II' . 0). One has

(L 0
71)(tl ~~ il (n!2'T1-jl2 r exp[-Il(u; - t;)2/2] du; = I.

l=l ... {

Since (L,/Ui)(t) is just the mean of the one-dimensional normal distribution
N(r, . l.'n). it is the function t, . Finally, if we put flll = I - 211':'n, then

(L,,7 exp( II t 2))(tl

l/, .":1

. IT (1/, 27T)1 2 I exp[-I/(U; - t;f,2] exp(lIu/) du;
;=1 ... -"1"-

,,,
= IT (flll)-1 ~ exp(II'thflll) = (fln)-1121'" exp(II' t; 2/flo).

1=1

Since flll tends to I when /I ---+ x. the last term converges to exp(II'! t '~)

uniformly on K.

(VIII). In this example we will consider operators {L"s1 which are
defined for t> 0 by

(L1/"T('))(l)x = I
• 0

THEOREM 3.14. Let K be an)' compact subset 0/[0, (0), T(t) E (O,(e"-'I,, K).
Then/or x EX. (L n8T(·))(t) x concerges to T(t).r uniforml)' 0/1 K.

Proof Lsing (21), we have

'(1/ 2t)" 1 .,
(L ~e" ,J )(t) = e-'" I ~-----I e-""ul,-le"" du

1/ " ~O k ! (k - I)! .' 0
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This shows that (L n81)(t) = 1 and that (L n8eu'lu,)(t) converges to en'i l uni
formly on K. By similar computations, we have (L n8u)(t) = t. Hence the
assertion follows from Theorem 2.1.

(IX). Let L n9 be defined for °~ t ~ 1 by

Then L,,9 maps Ole",[II, [0, I]) into the set of all strongly continuous func
tions on [0, 1].

THEOREM 3.15. For any function T(t) in Oleu'ill, [0,1]) and XE X,
(L,,9T(·))(t) x converges uniformly on [0,1] to T(l) x.

Proof (21) implies that for n larger than 1\',

= [1 + Irtl(n - 11')]".

Differentiation with respect to I\' yields that (L n9ue""ul)(t) = tn(n - 11')-1

[1 -L Il"tl(n - w)]". Clearly, these two identities imply that (L,,91)(t) = 1.
(L n911)(t) = t and (L nge"'l U!)(t) --+ e/l'!I[ uniformly on [0. 1] as n --+ 00. Hence
the assertion is true.

(X) The last example is the operator

y ( 11) n" rx(L~°T(·»(t)x = I ~ (-t)l-(l -L 1)-"-1. ---I e-"" 11k-1T(1l)xdu
k~O k (k-I)··o (28)

where t '?: 0. We have

THEOREM 3.16. Let K be any compact subset of [0, (0), T(t) E Oie"'!I. K).
Thenfor x E X, (L~°T(·»(t) x C011l-erges to T(t) x llniform~r on K as n --+ x.

Proof Similar computations show that (L~O1)(t) = 1, (L~Oll)(t) = t, and
(L~loe"'llIi)(t) = [1 - wt/(n - 11')]-" which converges to e!l' II uniformly on K.
Hence the theorem follows from Theorem 2.1.

Note that the operators L,,8, L n 9, L~o are Szasz, Bernstein and Baskakov
operators with f(k/n) replaced by the integral means (nl.):(k - l)! f; e-nu

ll"-1j(ll) duo
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4. REPRESEl\.TATIO-";S OF SEMIGROUPS

In this section \\e will apply the operators studied previously to derive some
representation formulas for semigroup operators.

Let 5 =c [T(tl , f 2 , •••• f,,,): 0 <: f, <: x. i- I. 2..... m] be am-parameter
semigroup of bounded linear operators on X. Let us assume that 5 is strongly
continuous on ~~'- = ff E iR"': f, _. ai, Vi; for some a such that a, "0,
i =c I. 2 111. If S, = [T,(ti) : 0" f, < ,x] denotes the restriction of
T(tl' f2 , , f,") to the half line:(O..... O. f,. 0, .... 0): O. f, '" x:. then S; is
itself an one-parameter semigroup which is strongly continuous for r, '> £Ii'

5 is the direct product of 5, : T(f l , f 2 ..... fo,) c f1;'~1 Ti(f i ). To each i there
correspond two numbers M, I and w, ; 0 such that

Ti(t,) M, exp(w,f,). ai '-~= f i < x.

(for this. see [4].) Hence. we have the inequality

T( f l , f2 , .... f",)' .\1 exp(lI'(tl ...:- f 2 - ... - f",)).

where AI = :\l I M2 ... Min and II' _·c maX{II', : J ,;: i "~: m1.
With the above properties at hand, we are prepared to derive a list of

formulas. First we notice that Corollary 3.2, Theorems 3.9 and 3.13 apply
to any 5 defined as above: Corollary 3.3. Theorems 3.5, 3.7. 3.11, and 3.12
apply to those 5 with II' O. that is. uniformly bounded semigroups;
Theorems 3.4. 3.6, 3.8. 3.10. 3.14, 3.15 and 3.16 apply to anyone-parameter
(Co)-semigroup. Then, because of the nice semigroup property. namely
T;(k,t;) = [Ti(ti»)hi. the representation formulas are easily obtained.

THEOREM 4.1. If fhe m-paramefer semigroup T(tl' f2 ..... fll') (= T(t») of
linear operators in B(X) is uniformly bounded and sfrongly continuous on ~~....

and if ~T1in ---+ 0 as n ---+ x. fhen

l ,., f' - a . '\ 1"
T(t)x ~= ~i,~ I -+- I (~)(Ti ('n

Tl

) ~ /)J T(a)x. (29)

holds for al/ x E X andfor al/ those t lI'hich are contained in K( :x Tl ) for all large
n; fhe convergence is uniform for t in any compact set in K(.:x Tl ).

Note that in the case m = 1 or sup cx" < ~, the assumption of uniform
boundedness of T(t) is not required. For those T(t)'s which are continuous
in the uniform operator topology, the limit in (29) can be taken in that
topology.

THEORE~I 4.2. Lef T( t) be as assumed in Theorem 4.1 and {'-'-,,: be £I
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sequence of positire numbers such that lim,,_x :\,,:'n = 0 and lim :l." > O. For
t EO IR~',_ and x EO X we hare

uniformly for t in any compact subset of IR~',. .

Note that when m = I the assertion is true also for unbounded one
parameter semigroups. Similar conclusions as the above can be obtained for
uniformly continuous semigroups.

This theorem follows from Theorem 3.5. Theorem 3.6, and the following
lemma.

LEM\-IA. For any bounded subset G oflR~~ . there is a positive integer N such
that if t E G and n .•?: lV, then the operator

is inrertible. and

the convergence is uniform for t in G.

Proof The series in (31) is dominated by the series

,.;; Al I (-r) (~I)" [ b,,(t) e"""] ,.
"~O v I - b,,(t)

where bn(t) = 2:;':1 (1, - G;)"'" and E" = J.n!n. Since G is bounded and
lim :x" '> O. we can choose h such that bn(1) ~ h for all t in G. Hence, we have
b,,(t) eU"n/( I - bn(t)) ~ hel"<n'( I - h) < I for all t in G and for sufficiently
large n. Therefore. there is N such that the last series converges uniformly for
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t in G to JI[I - b"U) 1'''''',(1 bllU))]-1 if n •.\. This implies that the
series in (31) converges absolutely and uniformly for t in G if n : .Y.

COROLLARY 4.3. If T(t) is an one-parameter semigroup strongly conrinlloll.\
on [a, x). then for each x E .r,

. [ t~a]"T(t).>;- Itm 2/ - T (---) T(a).>;.
11 ---."J: II .

%. (32)

Proof If t = a, this is trivial. If t ,a. then (32) is obtained by setting
an = t - a in (30).

THEOREM 4.4. Let T(t) be any f1/-parameter semigroup, strongly continuous
on ~:~. Thenfor x EX. t E IR:~.

rII, I 1
T(t)x c - !,i~ exp L.~l (ti - ai)l! (T, I,n) - nJ T(a).>; (33)

Furthermore. if T(t) is continuous in the uniform operator topology. then the
limit holds also in that topology.

Proof It follows from Theorem 3.8 that for each of i c_- I, 2.... , 111.

Ti(t;)x lim exp [UI - a, )11 IT, (~l- I)] T(ai)x.
II .J: 11

(34)

the convergence being uniform on any compact subset of [a , . .:x;). (33)
follows from (34) and the facts that T(t) = TI;~l T;(t,). and T, . i ~ I, 2..... /11.

commute with each other.

THEORE'v1 4.5. Let S -= [T(l); t E IR~'J be a strongly continuous m-para
meter semigroup. and Ai be the in/initesimal generator of T,Ui). i c - I. 2.... , 111.

Theil for x E X. t E iR~' ,

1/1

T(nx = lim IT (I - 1I- l t,A , )-1I x
II ·x ;=1

uniformly for t in compact sets of ~~'- .

A similar assertion holds for uniformly continuous semigroup,;.

Proof Theorem 3.10 implies that for each i-I. 2..... 111,

.1

lim (II ty' (II -- I)!' el(p( -1111 t,) II;' IT(II,).Y till"
n .y ~ 0

(35)
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uniformly on any compact subset of [0, a:::). But the last term is equal to
(f - n-ltiAi)-n for all large n (see [4, p. 34]), and so (35) follows immediately.

THEOREM 4.6. If T(t) is an one parameter semigroup of class (Co) having
infinitesimal generator A, then the following representation formulas hold:

T(t)x = lim exp{t[n2(nI - A)-l - 11/]1x,
n-·x

T(t)x = lim [(I ~ t)/ - tn(l1/ - A)-I]" X,
n--.:£

T(t)x = lim [(1 - t)I - tl1(l1/ - A)-l]-II X,
n---"'Y..

t .;; 0;

t ?: O.

(36)

(37)

(38)

Aloreorer, the convergence is uniform for t in any.finite interval on which the
limit holds.

Proof Since (n - A)-I; X = «k - I) !)-l f; e- lIl1 u"T(u) x du, (see [4,
p. 34]), (36), (37) and (38) follow easily from Theorem 3.14, Theorem 3.15
and Theorem 3.16, respectively.

The following two theorems are the respective versions of Theorem 3.12
and Theorem 3.13 for semigroups.

THEOREM 4.7. Let T(t), t .;." 0, be a uniformly bounded, strongly con
tinuous one-parameter semigroup. Then for any x E X.

T(t)x = lim t" , rY

e-fllu"-1 (T (~)r x du, (39)
Il~X (11 - I). 'OU

un(formly for t in any compact subset of [0, X)).

THEOREM 4.8. Let T(t), t E IR'". be a strongly continuous m-parameter
group of operators on X. Then for x E X, (25) holds uniformly for t in any
compact subset ~f IR"'.

Remark I. If T(t), t ?' O. is a (Co)-semigroup, Corollary 4.3 shows the
pointwise convergence of

[
- t ]-"T(th = ~i~ 2/- T (n) x. t :?;: O. (40)

If in addition. T(t) is contractive. we can deduce from Chernoff's product
formula ([6] or [28]) that (40) holds uniformly for t in any compact subset of
[0. 'X;). In fact. we can define V(t) to be the function [21 ~ T(t)]-l, t > 0).
Then we have V(O) = T.! VU)I- = - ~. L~~o (T(t)/2)": <; ~ L~~o: T(t):2! I, ,<:
t L:~ n (~y = I. and V'(O) x = lim t _' ll «Vet) - l);t) x = limH V(t)«T(t) 
l),t) x = Ax for x in the domain D(A) of the infinitesimal generator A of
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T(t). Thus the conditions set in Chernoff's theorem are fulfilled. and \\e
have for any x E X

. . ( "
T(t l-\ ~ lIm I J/ (-)) X

fJ-·X . n lim [2/- T (~)]"" x.
11 'l . 11 .

uniformly for ( in any compact subset of [0. x).

Remark 2. Theorem 4.4. \vith a ~. 0, gives the theorem of Dunford and
Segal [9]. In the case 111 ~.' L Theorem 4.1. for a .. c 0 and\" = I reduces to
Kendall's formula: Theorem 4.4 leads to Hille's first exponential formula;
Theorem 4.5 gives Widder's formula. Theorem 4.6 provides new proofs for
Phillips' formula (36) and the two formulas (37) and (38), due to Chung [7].
Other formulas obtained here such as the general case of (29), (30), (32) and
(39) seem to be new.
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